Transformations of Functions (Part 2) Symmetry:

\boldsymbol{y}-axis Symmetry:

The graph of a function f is symmetric with respect to the \boldsymbol{y}-axis if $f(-x)=f(x)$ for all x in the domain of f. A function that is symmetric with respect to the y-axis is called an even function.

Examples of even functions:
$g:\{(2,3)(3,6)(-2,3)(-3,6)\}$

$$
f(x)=x^{2}
$$

$$
h(x)=|x|
$$

Origin Symmetry:

The graph of a function f is symmetric with respect to the origin if $f(-x)=-f(x)$ for all x in the domain of f. A function that is symmetric with respect to the origin is called an odd function.

Examples of odd functions:
$g:\{(2,3)(3,-6)(-2,-3)(-3,6)\}$

$$
f(x)=x^{3}
$$

$$
h(x)=\frac{1}{x}
$$

Monotonicity:

A function f is said to be increasing on an interval if for all $x_{1}<x_{2}$ then $f\left(x_{1}\right)<f\left(x_{2}\right)$.
A function f is said to be decreasing on an interval if for all $x_{1}<x_{2}$ then $f\left(x_{1}\right)>f\left(x_{2}\right)$.
A function f is said to be constant on an interval if for all $x_{1}<x_{2}$ then $f\left(x_{1}\right)=f\left(x_{2}\right)$.

A function f is said to be monotone on an interval if f is increasing, decreasing, or constant on the entire interval.

Determine the intervals of monotonicity of the function $f(x)=-(x+3)^{2}+1$

Consider the function g whose graph is shown below:

What is the domain of g

What is the range of g

What is $g(1)$

What is $g(-3)$

What is $g(-2)$

Determine the intervals of monotonicity of g.

